
The Vulkan SDK

From the Vulkan API Launch
to Today

Karen Ghavam
CEO and Engineering Director
LunarG, Inc

● Creation of the Vulkan SDK
● Vulkan API and the Vulkan Developer Tools
● Creation of Present Day LunarG

Today’s Talk

Important Context
Who is LunarG
Who is Khronos
What is Vulkan
Why Vulkan?

9 Years Ago

The Existential Event
Important Context

Who is LunarG
Who is Khronos
What is Vulkan
Why Vulkan?

9 Years Ago

The Existential Event
Important Context

Who is LunarG
Who is Khronos
What is Vulkan
Why Vulkan?

The Vulkan Developer Tools
The Vulkan SDK

9 Years Ago

The Existential Event

The Mad Scramble
The Benefactor

Stabilization

Important Context
Who is LunarG
Who is Khronos
What is Vulkan
Why Vulkan?

The Vulkan Developer Tools
The Vulkan SDK

9 Years Ago

Technology Challenges
Today and the Future

The Existential Event

The Mad Scramble
The Benefactor

Stabilization

Important Context
Who is LunarG
Who is Khronos
What is Vulkan
Why Vulkan?

The Vulkan Developer Tools
The Vulkan SDK

Who is LunarG?
• Independent, privately owned software consultancy
• Passionate about 3D graphics & compute technology
• Industry leading, 3D-graphics software experts with

decades of experience
• Vulkan, OpenXR, OpenGL, Direct3D, Metal, …
• Developer tools, drivers, performance tuning…

• Developers of proprietary and open source drivers, tools, &
software solutions

• Founded in 2009 – Headquarters in Fort Collins, CO
• Delivers the Vulkan SDK

What is Vulkan?

● Cross-platform, Cross-vendor Graphics and Compute API
○ PCs, consoles, mobile phones, embedded platforms

● Vulkan API Specification Created by the Khronos Group
○ Member driven consortium for the creation and maintenance of open standards

■ GPU vendors
■ Platform vendors
■ SoC Integrators
■ Tool developers
■ Game Engine developers
■ …

● Low level and explicit API
○ Specification in essence defines a GPU

A Brief History of Vulkan

August 2014 March 2015 February 2016

SIGGRAPH in Vancouver
● Khronos call for participation in defining the "glNext" API

○ OpenGL, Direct3D were mature with minor feature updates
○ A need to scrape away the abstractions included in OpenGL and Direct3D
○ Mantle, Direct3D 12, Metal all demonstrated the needs of the future

● Features
○ High-efficiency access to graphics and compute on modern GPUs
○ Abstraction removal – explicit GPU and CPU control over workloads
○ Multithreading-friendly API with reduced overhead
○ Common shader programming intermediate language (SPIR-V)

A Brief History of Vulkan

First Vulkan Proof of Concept
● Vulkan ILO Driver (Linux, Intel GPU)
● Valve Source2 Engine
● Key feedback for the Vulkan 1.0 Specification

March 2015 February 2016August 2014

A Brief History of Vulkan

GDC
● Technical Previews
● Valve Source2 Engine
● Vulkan ILO Driver

March 2015 February 2016August 2014

A Brief History of Vulkan

Public Launch

March 2015 February 2016March 2015 February 2016August 2014

Why Vulkan?

Why Vulkan? Cross-platform support

Same API for Mobile, desktop, (and Apple platforms)

VIA

Why Vulkan? Improved Cross-vendor Compatibility

One API usage validator used by all (Vulkan-ValidationLayer)

Why Vulkan? Improved Performance

• Explicit application control over
GPU and CPU workloads

• Multithreading-friendly API

• No more error checking in the
Vulkan driver

Why Vulkan? Shader Language Flexibility

• Eliminates front-end
compilers from drivers
○ Reduce driver

complexity
• Front-end language

flexibility
○ Improve portability

Standardized Intermediate Language (SPIR-V)

HLSL

GLSL
ESSL

MSL

C
o

m
p

ile

New Language

Slang
Open Source

Compiler
github.com/shader-slang/slang

Why Vulkan? Open Standard

• Embrace and engage with the ISVs

• Open conformance test suite - more
rigor

• More control put in the developer's
hands

Strengthened ecosystem focus

Vulkan is a Layered Architecture

API calls work their way through the loader, layers, and driver in order

● Vulkan Loader
○ Library that finds and loads Drivers & Layers

● Vulkan Layer
○ “Plugin interface to the Vulkan API”
○ Intercepts Vulkan API calls made by applications
○ Enables mechanism for valuable cross-vendor debugging tools

OpenGL vs. Vulkan

Multiple Front-end
Compilers

GLSL, HLSL, etc.

Application
Single thread per context Application

Memory allocation
Thread management

Explicit Synchronization
Multi-threaded

Generation of command
buffers

Graphics Driver
Context management

Memory allocation
Full GLSL compiler

Error Detection

Graphics Driver
Explicit GPU Control

Loadable Layers
(e.g. Validation Layer)

GPU GPU

9 Years Ago

The Existential Event
Important Context

Who is LunarG
Who is Khronos
What is Vulkan
Why Vulkan?

The Forming of Present-day LunarG

When did "The Vulkan Journey" start for Karen?

● Labor Day Weekend, 2015.
○ "Off the Grid"
○ Upon return, it all started…

● "Do you want to coast to
retirement, or go out with a bang?“

● October 12, 2015 – First day at
LunarG

The Existential Event

● Turmoil 3 months before the public launch!

The Existential Event

● Turmoil 3 months before the public launch!

Mobile Focus

Desktop Focus

● Turmoil 3 months before the public launch!

Mobile Focus

The Existential Event

The Existential Event

9 Years Ago

The Existential Event
Important Context

Who is LunarG
Who is Khronos
What is Vulkan
Why Vulkan?

The Vulkan Developer Tools
The Vulkan SDK

Developer Tools and the Vulkan SDK

Why Developer Tools?
● While the Vulkan API specification is absolutely necessary…

○ It isn't sufficient for the success of the Vulkan API

● Application developers need debugging tools!

Open-source Vulkan Developer Tools
Included in the Vulkan SDK

SPIR-V
Optimizer

Crash
Diagnostic

Layer

Profiles
Toolset

vulkaninfo
Emulation

Layers

GPUInfo VOLK
SPIR-V

Validator

SPIR-V
Tools

DXC apidump
GFX

Reconstruct
VKVIA

SPIR-V
Reflect

SPIR-V
Cross

Vulkan-HPP Screenshot VMAglslang

MoltenVK SDL Monitor GLM
SPIR-V

Visualizer

shaderc

Vulkan
Loader

Validation
Layervkconfig

SPIR-V
Optimizer

Crash
Diagnostic

Layer

Profiles
Toolset

vulkaninfo
Emulation

Layers

GPUInfo VOLK
SPIR-V

Validator

SPIR-V
Tools

DXC apidump
GFX

Reconstruct
VKVIA

SPIR-V
Reflect

SPIR-V
Cross

Vulkan-HPP Screenshot VMAglslang

MoltenVK SDL Monitor GLM
SPIR-V

Visualizer

shaderc

Vulkan
Loader

Validation
Layervkconfig

Open-source Vulkan Developer Tools
Included in the Vulkan SDK

Vulkan Desktop Loader

● Used by ALL on ALL desktop platforms
● Consistent method of finding Vulkan Drivers
● Allows multiple Vulkan drivers to exist without interference
● Provides the plug-in mechanism to enable Vulkan Layers
 Having a single loader results in consistent runtime behaviors across
platforms

SPIR-V
Optimizer

Crash
Diagnostic

Layer

Profiles
Toolset

vulkaninfo
Emulation

Layers

GPUInfo VOLK
SPIR-V

Validator

SPIR-V
Tools

DXC apidump
GFX

Reconstruct
VKVIA

SPIR-V
Reflect

SPIR-V
Cross

Vulkan-HPP Screenshot VMAglslang

MoltenVK SDL Monitor GLM
SPIR-V

Visualizer

shaderc

Vulkan
Loader

Validation
Layervkconfig

Open-source Vulkan Developer Tools
Included in the Vulkan SDK

Vulkan Validation Layer

● Most valuable and critical debugging layer
● Validate correct Vulkan API usage (drivers don’t do it anymore)
● Once the application is error free, disable it and run at full speed!
● One validation implementation  More consistency across vendors

SPIR-V
Optimizer

Crash
Diagnostic

Layer

Profiles
Toolset

vulkaninfo
Emulation

Layers

GPUInfo VOLK
SPIR-V

Validator

SPIR-V
Tools

DXC apidump
GFX

Reconstruct
VKVIA

SPIR-V
Reflect

SPIR-V
Cross

Vulkan-HPP Screenshot VMAglslang

MoltenVK SDL Monitor GLM
SPIR-V

Visualizer

shaderc

Vulkan
Loader

Validation
Layervkconfig

Open-source Vulkan Developer Tools
Included in the Vulkan SDK

MoltenVK
● Bringing Vulkan to Apple

SPIR-V
Optimizer

Crash
Diagnostic

Layer

Profiles
Toolset

vulkaninfo
Emulation

Layers

GPUInfo VOLK
SPIR-V

Validator

SPIR-V
Tools

DXC apidump
GFX

Reconstruct
VKVIA

SPIR-V
Reflect

SPIR-V
Cross

Vulkan-HPP Screenshot VMAglslang

MoltenVK SDL Monitor GLM
SPIR-V

Visualizer

shaderc

Vulkan
Loader

Validation
Layervkconfig

Open-source Vulkan Developer Tools
Included in the Vulkan SDK

GFXReconstruct - API Capture and Replay
● Cross-platform (Windows, Linux, Android, macOS)
● Run Vulkan workloads during GPU development
● Debug Vulkan applications
● Regression testing using real application workloads
● Underlying engine for profiling and debugging tools

SPIR-V
Optimizer

Crash
Diagnostic

Layer

Profiles
Toolset

vulkaninfo
Emulation

Layers

GPUInfo VOLK
SPIR-V

Validator

SPIR-V
Tools

DXC apidump
GFX

Reconstruct
VKVIA

SPIR-V
Reflect

SPIR-V
Cross

Vulkan-HPP Screenshot VMAglslang

MoltenVK SDL Monitor GLM
SPIR-V

Visualizer

shaderc

Vulkan
Loader

Validation
Layervkconfig

Open-source Vulkan Developer Tools
Included in the Vulkan SDK

Crash Diagnostic Layer
● Track down and identify the cause of GPU hangs and crashes
● Instruments command buffers with completion checkpoints
● Get a dump file
● Strong user demand. Debugging Device Lost errors very difficult!

The Vulkan SDK

Delivered by LunarG in close coordination with the Khronos Vulkan working group

SPIR-V
Optimizer

Crash
Diagnostic

Layer

Profiles
Toolset

vulkaninfo
Emulation

Layers

GPUInfo VOLK
SPIR-V

Validator

SPIR-V
Tools

DXC apidump
GFX

Reconstruct
VKVIA

SPIR-V
Reflect

SPIR-V
Cross

Vulkan-HPP Screenshot VMAglslang

MoltenVK SDL Monitor GLM
SPIR-V

Visualizer

shaderc

Vulkan
Loader

Validation
Layervkconfig

● Benefits
○ Pre-built
○ Curated
○ Integrated
○ System

Installation
○ vkconfig ready

for use
○ License Registry

The Vulkan SDK

Delivered by LunarG in close coordination with the Khronos Vulkan working group

SPIR-V
Optimizer

Crash
Diagnostic

Layer

Profiles
Toolset

vulkaninfo
Emulation

Layers

GPUInfo VOLK
SPIR-V

Validator

SPIR-V
Tools

DXC apidump
GFX

Reconstruct
VKVIA

SPIR-V
Reflect

SPIR-V
Cross

Vulkan-HPP Screenshot VMAglslang

MoltenVK SDL Monitor GLM
SPIR-V

Visualizer

shaderc

Vulkan
Loader

Validation
Layervkconfig

On

● LunarG Ownership
○ Initial creation
○ Ongoing

enhancement and
maintenance

● LunarG - contributor

● LunarG - Maintainer

SPIR-V
Optimizer

Crash
Diagnostic

Layer

Profiles
Toolset

vulkaninfo
Emulation

Layers

GPUInfo VOLK
SPIR-V

Validator

SPIR-V
Tools

DXC apidump
GFX

Reconstruct
VKVIA

SPIR-V
Reflect

SPIR-V
Cross

Vulkan-HPP Screenshot VMAglslang

MoltenVK SDL Monitor GLM
SPIR-V

Visualizer

shaderc

Vulkan
Loader

Validation
Layervkconfig

The Vulkan SDK

Vulkan SDK Download Page (vulkan.lunarg.com)

Vulkan SDK Downloads are Healthy

Note: Numbers are for Linux “Tarball” only and don’t include
Ubuntu packages also available from LunarG or other linux distros

~5800/week

~6000/week
~38,000/week

9 Years Ago

The Existential Event

The Mad Scramble
The Benefactor

Stabilization

Important Context
Who is LunarG
Who is Khronos
What is Vulkan
Why Vulkan?

The Vulkan Developer Tools
The Vulkan SDK

The Mad Scramble
● Half the engineering team
● Deliver an SDK in 3 months

○ Vulkan Loader
○ Vulkan Validation Layer

● Launch the SDK download site
(vulkan.lunarg.com)

The Mad Scramble

The Good News
• The engineers knew what
they were doing

The Bad News
• The challenge in front of us!

The Vulkan API Launch - February 16, 2016
● Coordinated Launch

○ Khronos Vulkan 1.0 API specification
○ First Vulkan SDK

How is this funded?

How is this funded?

How is this funded?

How is this funded?

Why Did We Succeed in the Beginning?

A Meaningful Purpose
● Our work matters, and will

have a positive and broad
industry impact

Why Did We Succeed in the Beginning?

A Meaningful Purpose
● Our work matters, and will

have a positive and broad
industry impact

● The Generosity of the
Vulkan Ecosystem
Benefactor

Stabilization

● Strong Vulkan API adoption as a
low-level standard

● More companies actively
participating in building the
ecosystem

○ Enabling benefits for ALL

● Listening to the Vulkan
application developers

○ Yearly LunarG Developer Survey
○ Accountability to the developers

Stabilization
● A team of 3D graphics SW experts excited about the vision

○ Talented, skilled, enthusiastic
○ Naturally attracts the right people for the job

Stabilization
● A team of 3D graphics SW experts excited about the vision

○ Talented, skilled, enthusiastic
○ Naturally attracts the right people for the job

● And the LunarG purpose continues!

The First Vulkan SDK

● An INCOMPLETE
Validation Layer
implementation

● The first Vulkan Loader
implementation

● Windows and Linux only

Validation Layer - Then and Now

90K

June 2018

Validation Layer - Then and Now

90K

June 2018

730K

June 2024

Validated VUs

Total VUs

NOT validated VUs

M
arch 2

01
7

M
arch 2

01
8

Jan
ua

ry 20
20

Jan
ua

ry 20
22

Jun
e 20

24

VUIDs Over Time

Validation Layer and VUIDs

● VUID - Valid Usage ID
○ Assigned to each API

usage
○ How that part of the API

must be used

● Validation Layer is
validating the VUIDs
○ “Error Checking”

The Validation Layer - Today
● Healthy open-source project with robust functionality

○ GPU-assisted validation - to support the bindless attributes of the Vulkan API

The Validation Layer - Today
● Healthy open-source project with robust functionality

○ GPU-assisted validation - to support the bindless attributes of the Vulkan API

○ Synchronization Validation
○ 2019 - Hazard detection within a single buffer
○ 2022 - Hazard detection within and between queue submissions and

across queues
○ These two versions enable baseline functionality and does not cover all

Vulkan extensions. More to do!

The Validation Layer - Today

● CI Test Farm
● SW testing

● Mock ICD
● GPU HW

● Nvidia
● AMD
● Intel
● Android

● Windows, Linux,
Android, macOS

The Validation Layer

We aren't done yet!
Vulkan API continues to evolve!

9 Years Ago

Technology Challenges
Today and the Future

The Existential Event

The Mad Scramble
The Benefactor

Stabilization

Important Context
Who is LunarG
Who is Khronos
What is Vulkan
Why Vulkan?

The Vulkan Developer Tools
The Vulkan SDK

Validation Layer - Vulkan Synchronization

Validation Layer Improvement Opportunity:

● High Performance Overhead due to
required volume of state tracking

● Ongoing improvement opportunity:
Performance tuning

Cmd-buffer

Cmd-buffer

Queue Queue

Device Host

Barrier

Event Event

Cmd-buffer

Queue

Semaphores

Fences

Semaphores
Main cross-queue synchronization mechanism

Events and Barriers
Synchronization of commands submitted to a single
queue

Fences
Synchronize work between the device and the host

Validation Layer – So Many Vulkan Objects!

● The Sheer Number of
Vulkan Objects – complexity

● Different functions and
usages

○ Rules for how can they be used
○ Rules for order of creation

 Complexity in the validation
layer

In
stance

P
h

ysica
l D

evice
D

evice

Memory Heap

Memory Type
Queue Family

Instance

PhysicalDevice

Device

SurfaceKHR

SwapchainKHR

Image

DeviceMemory

Buffer

Queue

Fence

Semaphore
BufferView ImageView

Samper

DescriptorSetLayout
DescriptorPool

DescriptorSet
PipelineLayout

RenderPass

FrameBufferQueryPool

Pipeline

Event

ShaderModule

PipelineCache

Validation Layer - Descriptor Indexing Validation
● Descriptors invoked from shaders

○ Only used descriptors required to be
valid

○ Might only use “10” out of millions

● Initial validation implementation
○ Slowed app from 100+ FPS to a

fractional value!
○ All descriptors were being validated,

regardless if used!

● Performance Improvement!
○ Using instrumented shaders on the GPU

■ Detect which descriptors are
actually used

○ Only validate used descriptors

Descriptor
Indices

Descriptor Set 1
Descriptor 1
Descriptor 2
Descriptor 3

…

Descriptor N

Descriptor Set 2
Descriptor 1
Descriptor 2
Descriptor 3

…

Descriptor N

Descriptor Set N
Descriptor 1
Descriptor 2
Descriptor 3

…

Descriptor N

…

Index 1
Index 2
Index 3
Index 4
Index 5

Index N

…

A
p

plica
tion

 R
e

source
s

Validation Layer – GPU-AV Performance

● GPU-AV requires
instrumenting shaders

● Shaders become
bloated; impacting
performance

○ Pipeline compile times
○ Runtime shader execution

Validation Layer – Latency in Error Reporting

● Errors detected well after the
Vulkan API call that caused them
(aka at vkQueueSubmit time)

● Difficult to provide meaningful error
messages

● Opportunity to improve error
messages:

○ Storing information for later
use without unbearable
performance impacts

GFXReconstruct - Vulkan Swapchain

● Different swapchain modes present and
return images in different order

○ From run to run

● No swapchain presentation mode
guarantees return order!

● GFXReconstruct Opportunity: How can we
display the correct image during replay?

○ Solution: Implemented a virtual swapchain
○ Same number of images in replay as in capture
○ Use the indices in the same order from capture to

replay

Swapchain

Image

Image

Image

Display

Surface
(Window)

GFXReconstruct - API Explicitness
● Portability Challenge

○ Vulkan API is explicit
○ Hence captures from one GPU can’t be replayed on another GPU

● Conflicting Use Cases
○ Exact API calls needed for analysis
○ Use existing captures on newer/different GPUs

● Opportunity: How to enable some portability of captures
○ Collect additional data?
○ Translation layer?

The GPU-centric Universe
● GPUs - no longer "Graphics Processing Units"

○ Efficient processing of large blocks of data simultaneously
○ Compute - AI and ML

● Less Graphics API usage on the CPU
○ Rendering complexity still increasing via GPU driven rendering

● Many workloads moving to the GPU
○ Maximize utilization of GPU features
○ Reduce CPU interaction CPU GPU

CommandList:
DispatchGraph()

Global Root
Arguments:

pGlobalData=0xefc0,
Time=25.3f

BRDFShader

DecalShader

FarAway
Shader

SuperClose
Shader

Complex
Materials
Shader

NodeArray: Materials

Node: RecursiveCull

Recursive
CourseCulling

Shader

Node: Standalone
Work

Standalone
Random Work

Shader

Node: RiverSim

RiverShader

Node: DropletSim

WaterDroplet
Shader

Node: Logging

SidebandLogging
Shader

Node: FineCull

FindCulling
Shader

Local Root
Arguments:
Scale=5.0f,

pDataBuffer=
0xf9f9

Node: AlternateCull

FindCulling
Shader

Local Root
Arguments:
Scale=1.0f,

pDataBuffer=
0x2543

Shared
Input

Picture from MS D3D12 Work Graphs – DirectX Developer Blog. March 11, 2024

D3D12 Work Graphs – GPU Autonomy

● GPU Autonomy
○ GPU Feeds itself

● Dynamic Work Expansion
○ Shader threads (producers)

requesting work to run
(consumers)

● Removes round trips to
CPU

● Currently not available in
Vulkan

GFXReconstruct - GPU Autonomy

● Information no longer known at a function device call from the CPU side
● Addresses baked into capture content

○ Needs to be a different address during replay

GPU-Centric Universe : Developer Tools
Implications

● Debugging on a CPU vs GPU
○ CPUs provide the Instruction Set Architecture (ISA) and ability to step thru code
○ GPUs can be a black box and intrinsically different

○ Imagine stepping through 1 of a million items in a massive parallelism
environment!

● Cross-GPU open-source tools are useful today
○ Evolve the tools for the GPU-centric universe
○ Cooperation needed from many parties

○ IHVs
○ Specification definitions
○ Tool writers

An Example API “hook”

● Vulkan “bufferDeviceAddressCaptureReplay”
○ Enable in driver during capture
○ Query memory location upon allocation
○ Can use that same memory allocation during replay
○ Current limitation: Not guaranteed to work from one vendor to another

From the launch of Vulkan to Today…

● There is ONE Industry-standard Vulkan desktop SDK
○ Wide adoption
○ Strong satisfaction
○ Open and free for all developers
○ Cross-platform SDK: Windows-x64/x86, Windows on arm, Linux, Apple platforms

● Valuable developer tools
○ Robust in features and reliability
○ Providing real value to Vulkan application developers

From the launch of Vulkan to Today…

LunarG Purpose Continues!
Evolve the tools for a GPU-centric universe!

● There is ONE Industry-standard Vulkan SDK
○ Wide adoption
○ Strong satisfaction
○ Open and free for all developers
○ Cross-platform: Windows, Linux, Android, Apple platforms

● Valuable developer tools
○ Robust in features and reliability
○ Providing real value to Vulkan application developers

Karen’s Reflection on the LunarG Journey

● The Power of being “Purpose Driven”
○ The ability to overcome adverse conditions to achieve amazing results!

● A Gift to the Vulkan Ecosystem
● Useful
● Impactful
● Lasting and can be carried forward

