
Automatic
RelaxedPrecision
Decoration and
Conversion in Spirv-Opt
Greg Fischer, LunarG
September 2019 - Revision 1

Executive Summary
Two new passes have been added to spirv-opt to automatically convert SPIR-V shaders to
utilize RelaxedPrecision semantics. These passes allow the developer to take advantage of
lower precision computations without having to make changes to the shader source. The first
pass can be used to automatically convert a whole SPIR-V shader to use RelaxedPrecision,
which can be advantageous on both mobile and desktop GPUs. The second pass can be used to
automatically convert a RelaxedPrecision-decorated shader to explicitly use 16-bit precision on
devices which do not support RelaxedPrecision, but do support the
VK_KHR_shader_float16_int8 extension, such as iOS/MoltenVK.

Introduction
When a 32-bit floating point (float32) SPIR-V executable instruction is decorated with
RelaxedPrecision, the result is still a float32 value, but the driver has permission to only
compute as few as 16-bits of precision. This can improve performance and/or reduce power
consumption if the application does not require the full precision for that instruction. This is a
fairly easy change to make as it does not require changes to variable data types.

In GLSL, a programmer can quickly maximize use of RelaxedPrecision by defaulting to medium
precision using “precision mediump float;” at the top of a fragment shader. However, given
HLSL or SPIR-V shaders this process is more involved. To this end, we have added the
--relax-float-ops pass which applies the RelaxedPrecision decoration to all float32
executable instructions in a SPIR-V file, including all image references. All interface variables
retain their original types, although their loads are relaxed.

Unfortunately, some Vulkan drivers such as MoltenVK ignore the RelaxedPrecision directive,
usually because the underlying implementation (in the case of MoltenVK, Metal), does not
support the RelaxedPrecision semantics. If it is the situation, however, that the underlying

September 2019 Automatic RelaxedPrecision Decoration and Conversion In Vulkan 1

implementation does support a true 16-bit floating point type (as it is with Metal), benefits of
RelaxedPrecision semantics can be achieved by converting RelaxedPrecision instructions to
true 16-bit-type instructions using the VK_KHR_shader_float16_int8 extension.

To this end, the --convert-relaxed-to-half pass has been added to spirv-opt . This
pass translates all arithmetic float32 instructions decorated with RelaxedPrecision to 16-bit
floating point (float16 aka half) instructions, adding additional conversion instructions for
operands and results where needed.

How to apply RelaxedPrecision to a whole SPIR-V
shader
The RelaxedPrecision decoration is applied to executable instructions in SPIR-V by
glslangValidator when it sees usage of the mediump precision variables in GLSL. Both
glslangValidator and dxc will do so for the min16float type in HLSL.

If you are starting with a SPIR-V file and you wish to apply the RelaxedPrecision decoration to
all float32 executable instructions, perform the following:

spirv-opt.exe --relax-float-ops -o f.opt.relax.spv f.opt.spv

All variables, including interface variables, retain their original types and are not decorated,
however, the loads from these variables are decorated.

How to convert RelaxedPrecision to half
The spirv-opt --convert-relaxed-to-half pass is most effective if it is performed
after “standard” size optimizations are applied to the SPIR-V, specifically optimizations which
remove function scoped variable loads and stores and composite inserts and extracts. Both
glslangValidator and DXC apply these optimizations by default as part of HLSL compilation. The
-Os option of glslangValidator will perform these for GLSL shaders. If you are starting with an
unoptimized SPIR-V file f.spv, the following recipe would be equivalent:

spirv-opt.exe --eliminate-dead-branches --merge-return

--inline-entry-points-exhaustive --eliminate-dead-functions

--scalar-replacement --convert-local-access-chains

--eliminate-local-single-block --eliminate-local-single-store

--simplify-instructions --eliminate-dead-code-aggressive --vector-dce

--eliminate-dead-inserts --eliminate-dead-code-aggressive

--eliminate-dead-branches --merge-blocks

--eliminate-local-multi-store --if-conversion --simplify-instructions

September 2019 Automatic RelaxedPrecision Decoration and Conversion In Vulkan 2

--eliminate-dead-code-aggressive --vector-dce

--eliminate-dead-inserts --redundancy-elimination

--eliminate-dead-code-aggressive --cfg-cleanup -o f.opt.spv f.spv

Once you have an optimized SPIR-V, perform the following:

spirv-opt.exe --convert-relaxed-to-half -o f.opt.half.spv f.opt.spv

This converts all relaxed, arithmetic float32-type instructions to float16-type instructions, adding
float32->float16 and float16->float32 conversion of operands and results where necessary. The
RelaxedPrecision decoration is removed from any converted instructions. Instructions which
operate on images such as sample instructions are not converted.

Finally, you will ultimately want to perform the following optimization passes to cleanup any
unnecessary conversions generated by --convert-relaxed-to-half :

spirv-opt.exe --simplify-instructions --redundancy-elimination

--eliminate-dead-code-aggressive -o f.opt.half.clean.spv

f.opt.half.spv

When should RelaxedPrecision be converted to
half?
Conversion of RelaxedPrecision to half should be done when a driver does not support
(ignores) the RelaxedPrecision decoration, but does support a true float16 type for arithmetic
operations. This is true most significantly for MoltenVK, however other drivers may silently be
ignoring RelaxedPrecision decorations as well. If applying RelaxedPrecision decorations to a
shader does not give any performance improvement or power reduction, you may wish to try
converting it to half.

What are the potential benefits of converting
RelaxedPrecision to half?
Since GPUs and drivers vary greatly in the benefits of half-precision and the cost of conversion
computation, it is hard to predict the overall profit. Our one experience gave good results.

When developing this option, we worked with a MoltenVK developer targeting a number of
mobile devices. While the older devices saw only about a 1% improvement in frame rate, the
newer devices saw around 12% with the iPhone8 seeing a 13.68% improvement. This
improvement was seen using --relax-float-ops to relax all float32 instructions, but one

September 2019 Automatic RelaxedPrecision Decoration and Conversion In Vulkan 3

computation had to be un-relaxed by hand as it caused visual artifacts. No other tuning was
performed.

Another benefit of conversion to half is that the resulting code will have the same precision
across all platforms, aiding in portability.

What are the potential pitfalls of converting
RelaxedPrecision to half?

It is possible that converting RelaxedPrecision to half could cause a shader and its application
to run slower. In general, the longer the computation sequence, the less additional conversion is
needed and the more profitable the conversion. Very short sequences may see a slowdown and
may need to be unrelaxed.

When should RelaxedPrecision not be converted to
half?
It may be disadvantageous to convert RelaxedPrecision to half when a driver does support the
RelaxedPrecision decoration. The conversion would prevent true RelaxedPrecision behavior,
which might be faster.

How to apply RelaxedPrecision to a whole SPIR-V
shader
The RelaxedPrecision decoration is applied to executable instructions in SPIR-V by
glslangValidator when it sees usage of the mediump precision variables in GLSL. Both
glslangValidator and dxc will do so for the min16float type in HLSL.

If you are starting with a SPIR-V file and you wish to apply the RelaxedPrecision decoration to
all float32 executable instructions, perform the following:

spirv-opt.exe --relax-float-ops -o f.opt.relax.spv f.opt.spv

All variables, including interface variables, retain their original types and are not decorated,
however, the loads from these variables are decorated.

September 2019 Automatic RelaxedPrecision Decoration and Conversion In Vulkan 4

When should RelaxedPrecision not be applied?
Some computations just require 32-bit precision. One possible workaround is to move the
computation from the “relaxed” fragment shader into the “non-relaxed” vertex shader, if
possible.

Acknowledgements
The author would like to thank Dan Ginsburg at Valve for providing workloads and feedback
during the project development.

Document Change Log
9/6/19 - First version

September 2019 Automatic RelaxedPrecision Decoration and Conversion In Vulkan 5

