

Guide to Vulkan Synchronization
Validation

John Zulauf, LunarG
Version 1.0, released with SDK 1.2.162.1
January 2021

1

Table of Contents
Introduction 3

Quick Start 3
Running Synchronization Validation 3
Synchronization Validation Messages 3
Frequently Found Issues 4
Debugging Tips 4

What is synchronization and why is it important? 4
Synchronization Operations 6
Pointers to synchronization blogs/articles 6

Understanding Synchronization Validation 6
Stage/Access Usage Pairs 7
Validation Checks 7
Most Recent Access 8

Using Synchronization Validation 12
Enabling synchronization validation 12
Typical Usage 13

Understanding Synchronization Validation Messages 14
Root Causing Hazards 15

From Access info information 16
Hazards vs. Prior Image Layout Transitions 16
Hazards at Image Layout Transitions 17
Hazards between buffer and/or image resource uses 17

Method of bisection 17

Optimizing Synchronization with Synchronization Validation 18

For Further Information and Current Status 19

Revision History 19

01/2021 LunarG Guide to Vulkan Synchronization Validation 2

Introduction
Synchronization Validation is implemented in the VK_LAYER_KHRONOS_validation
layer as a Validation Object. When enabled, it is intended to identify resource access
conflicts due to missing or incorrect synchronization operations between actions (Draw,
Copy, Dispatch, Blit) reading or writing the same regions of memory.

Quick Start
The following quick start should enable initial testing for those familiar with Vulkan
synchronization and debugging validation issues. Prior to enabling Synchronization
Validation, assure that the default set of Validation checks run cleanly. Note: Quick Start
readers should be familiar with both Vulkan Synchronization and using/configuring
Vulkan Validation.

Running Synchronization Validation

The simplest way to run synchronization validation and debug issues is to:

● Enable Synchronization Validation using Vulkan Configurator (vkconfig).
● Create a debug callback with vkCreateDebugUtilsMessengerEXT with

VK_DEBUG_REPORT_ERROR_BIT_EXT set.
● Set a breakpoint in the debug callback and run your application in the debugger.
● The hazards will be reported when a vkCmd... command with a hazard is

recorded.

Synchronization Validation Messages

All synchronization error messages begin with SYNC-<hazard name>. The message body
is constructed:

<cmd name>: Hazard <hazard name> <command specific details> Access info (<...>)

Access info contains information about current and prior usage (formatted
SYNC_<stage>_<access>) and any intervening synchronization. Memory or subresource
range of the usage is given in the command-specific details among other information.

01/2021 LunarG Guide to Vulkan Synchronization Validation 3

https://vulkan.lunarg.com/doc/sdk/latest/windows/vkconfig.html

Frequently Found Issues

● Assuming pipeline stages are logically extended with respect to memory access
barriers. Specifying the vertex shader stage in a barrier will not apply to all
subsequent shader stages read/write access.

● Invalid stage/access pairs (specifying a pipeline stage for which a given access is
not valid) that yield no barrier.

● Relying on implicit subpass dependencies with VK_SUBPASS_EXTERNAL
when memory barriers are needed.

● Missing memory dependencies with Image Layout Transitions from pipeline
barrier or renderpass Begin/Next/End operations.

● Missing stage/access scopes for load operations, noting that color and
depth/stencil are done by different stage/access.

Debugging Tips

● Read and write barriers in the error message can help identify the
synchronization operation (either subpass dependency or pipeline barrier) with
insufficient or incorrect destination stage/access masks (second scope).

● Access info read_barrier and write_barrier values of 0, reflect the absence of
any barrier and can indicate an insufficient or incorrect source mask (first scope)

● Insert additional barriers with stage/access VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_ACCESS_MEMORY_READ_BIT|VK_ACCESS_MEMORY_WRITE_BIT for both src*Mask and
dst*Mask fields to locate missing barriers. If the inserted barrier resolves a hazard,
the conflicting access happens-before the inserted barrier. (Be sure to delete
later.)

What is synchronization and why is it important?

Correct synchronization is needed to ensure correct results from Vulkan operations
(whether graphical or computational). Modern graphics hardware is both parallel and
pipelined, with various operations happening simultaneously for performance reasons.
Vulkan has a limited number of ordering guarantees, but for most operations, it is the
application's responsibility to inform the implementation when ordering is required
between operations. The need for such synchronization operations arises when the
same region of memory is used by subsequent operations in different ways -- for

01/2021 LunarG Guide to Vulkan Synchronization Validation 4

example a mip-level being written by a blit operation, and then being used for sampled
lookup by a shader. If these two uses are not guaranteed to operate sequentially, a
data hazard exists. These hazards are:

When an application is insufficiently synchronized, data corruption of various types can
occur. Blit, copy, or present operations may result in a destination image (or buffer) that
is based on an incomplete source image (or buffer), or one partially updated from a
previous state. Unsynchronized buffers may contain uninitialized or invalid constant,
vertex, or index values corrupting in results of a draw or dispatch call. As with all parallel
processing problems, these corruptions may appear only rarely, or sporadically, making
them difficult to find and debug.

Correct synchronization is also important for application portability. Vulkan
implementations may vary in the effective synchronization implicit in their software or
hardware. This means that applications operating without correct synchronization may
work correctly versus a given manufacture, model, or even driver version, but may fail
with data corruptions (again, potentially rarely, and sporadically) on other

01/2021 LunarG Guide to Vulkan Synchronization Validation 5

RA
W

Read-after-write This occurs when a subsequent operation uses the
result of a previous operation without waiting for the
result to be completed.

WA
R

Write-after-read This occurs when a subsequent operation overwrites
a memory location read by a previous operation
before that operation is complete. (requires only
execution dependency)

WA
W

Write-after-write This occurs when a subsequent operation writes to
the same set of memory locations (in whole or in
part) being written by a previous operation.

WR
W

Write-racing-write This occurs when unsynchronized
subpasses/queues perform writes to the same set of
memory locations.

RR
W

Read-racing-write This Occurs when unsynchronized
subpasses/queues perform read and write
operations on the same set of memory locations

implementations. Even an optimization introduced by a new driver could expose a
failure mode, indicating missing or insufficient set of synchronization operations.

Synchronization Operations

Synchronization operations create dependencies between operations accessing
memory. These execution and memory dependencies are used to solve data hazards,
i.e. to ensure that read and write operations occur in a well-defined order.
Write-after-read hazards can be solved with just an execution dependency, but
read-after-write and write-after-write hazards need appropriate memory dependencies
to be included between them. If an application does not include dependencies to solve
these hazards, the results and execution orders of memory accesses are undefined.

While it is critical for data integrity that sufficient dependencies be defined to avoid these
hazards, it is equally important that excess dependencies are not used, which would
impact performance by overly serializing execution. Synchronization Validation can be
used to test reductions in dependencies, with confidence that the less restrictive
synchronization scheme is still correct.

Pointers to synchronization blogs/articles

Synchronization Examples

Keeping your GPU fed without getting bitten

Yet another blog explaining Vulkan synchronization

Understanding Synchronization Validation

When a Vulkan command that accesses memory is recorded, the accesses for that
command are tested for potential conflicts with previous accesses -- the hazards listed
above. These accesses may be explicitly defined by command parameters, for example
copy and blit source and destination. The accesses may be defined by the creation
parameters of another Vulkan object (for example a RenderPass, FrameBuffer, or
ShaderModule), or by descriptor or buffer binding. In addition to copy, blit, draw, and
dispatch calls which clearly imply memory accesses, synchronization operations
(barriers, events) and render pass operations (begin, next, end) may have implicit

01/2021 LunarG Guide to Vulkan Synchronization Validation 6

https://github.com/KhronosGroup/Vulkan-Docs/wiki/Synchronization-Examples
https://www.youtube.com/watch?v=oF7vOTTaAh4
https://www.youtube.com/watch?v=oF7vOTTaAh4
http://themaister.net/blog/2019/08/14/yet-another-blog-explaining-vulkan-synchronization/
http://themaister.net/blog/2019/08/14/yet-another-blog-explaining-vulkan-synchronization/

accesses. The user should not be surprised when hazards occur during (or due to)
these other types of Vulkan commands.

When running Synchronization validation against your code, the current functionality will
report hazards between accesses within the same command buffer. The error
messages will list the command during which the hazard occurred, command specific
details of which access within the command conflicts with a prior access, details about
the current access, and the prior command and access with which the current access
conflicts. The prior command is identified by command name and the sequence
number within the current command buffer.

Stage/Access Usage Pairs

While the Vulkan specification typically lists pipeline stages and access types
independently, only a small subset of the possible combinations of stage and access
types are valid. (See Table 4. Supported access types in the Access Types section of
the Vulkan API Specification). In error messages the stage/access pairs are given as
SYNC_<stage>_<access type> for brevity, denoting an access of
VK_ACCESS_<access_type>_BIT occurring on stage VK_PIPELINE_STAGE_<stage>_BIT.
(Note that for extension bits, the extension tag is appended to the SYNC_... string.).
Additional SYNC_... strings are defined for implicit accesses without stage or access. For
example SYNC_IMAGE_LAYOUT_TRANSITION denotes the read/write access implied by an
image layout transition.

Validation Checks

The Vulkan specification describes synchronization dependencies in terms of
relationships between operations. Synchronization Validation however looks at the
impact of synchronization operations on the safety (or correctness) of subsequent
actions on resources, whether ranges of memory, or image subresource ranges and
extents. For each Vulkan command that operates on memory, the prior state of
affected memory ranges is inspected for the stage/access type of prior usage, the effect
of synchronization operations on which subsequent usages are known safe relative to
the prior accesses. Synchronization Validation error messages report hazards caused
by the current Vulkan command's resource accesses relative to prior accesses for the
same resources.

01/2021 LunarG Guide to Vulkan Synchronization Validation 7

https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap7.html#synchronization-access-types
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap7.html#synchronization-access-types

Most Recent Access

When reporting hazards, Synchronization Validation only inspects the most recent
access for a given memory or image subresource range. It can be shown that for any
hazard with an access prior to the most recent access, a hazard between the most
recent access and that prior access must also exist. Since, all prior hazards are
assumed to have been reported, tracking state prior to the most recent access is
unneeded.

For read operations the most recent access rules apply to prior reads with execution
barriers (or ordering) relative to the current read. The prior write access is only
considered the most recent access if no intervening prior read has occurred that
happens-before the current read. Consider the following sequence of access and
barriers (listed in submission order) acting on the same memory address:

01/2021 LunarG Guide to Vulkan Synchronization Validation 8

Operation Description

W write operation

M memory barrier guarding access at R0

R0 first read operation

R1 second read operation

E execution barrier such that R2 happens-after R1

R2 third read operation

R3 fourth read operation with stage not in second execution scope of E

For write hazard checks in a given range of memory addresses, if there are intervening
read operations between the current write and the most recent previous write, these
intervening read operations are considered the most recent access. In that case,
write-after-write checks are not done.

01/2021 LunarG Guide to Vulkan Synchronization Validation 9

Consider the following sequence of operations on the same memory address:

01/2021 LunarG Guide to Vulkan Synchronization Validation 10

Operation Description

W0 first write operation

M memory barrier guarding access at R

R read access

E execution barrier guarding access at W1

W1 second write operation

In this case, a read-after-write check is done for R based on W0 and M, and a
write-after-read check is performed on W1 based on R and E. W1 is not checked
against W0 for write-after-write. If W0, M, R is not a hazard, this guarantees W0 is
available and visible to R, and thus to any operations that happen-after. As such, the
correctness of R, E, W1 depends solely on those operations. The correctness of the
entire sequence can be assured by pairwise hazard checks.

01/2021 LunarG Guide to Vulkan Synchronization Validation 11

Using Synchronization Validation

Before validating synchronization operations, resolve all validation errors from Standard
Validation and Thread Safety. This will prevent wasted effort debugging hazards caused
by invalid usage of the commands involved. It is possible to have entirely valid Vulkan
command streams, and still have synchronization issues. However, invalid Vulkan
commands may introduce synchronization issues by changing the effect of those
commands.

Enabling synchronization validation.

The simplest way to enable Synchronization Validation is using Vulkan Configurator. In
“Validation Settings” uncheck all “Validation Areas” except “Handle Wrapping” and
“Synchronization.” This can also be done using your layer settings file,
vk_layer_settings.txt

khronos_validation.enables =

VK_VALIDATION_FEATURE_ENABLE_SYNCHRONIZATION_VALIDATION_EXT

Khronos_validation.disables =

VK_VALIDATION_FEATURE_DISABLE_OBJECT_LIFETIMES_EXT,VK_VALIDATION_FEATURE_DISABLE_API_

PARAMETERS_EXT,VK_VALIDATION_FEATURE_DISABLE_CORE_CHECKS_EXT,VK_VALIDATION_FEATURE_DI

SABLE_THREAD_SAFETY_EXT

or through environment variables: (on non-Windows system replace “;” with “:”)

VK_LAYER_ENABLES=VK_VALIDATION_FEATURE_ENABLE_SYNCHRONIZATION_VALIDATION_EXT

VK_LAYER_DISABLES=VK_VALIDATION_FEATURE_DISABLE_CORE_CHECKS_EXT;VK_VALIDATION_FEATURE

_DISABLE_OBJECT_LIFETIMES_EXT;VK_VALIDATION_FEATURE_DISABLE_API_PARAMETERS_EXT;VK_VAL

IDATION_FEATURE_DISABLE_THREAD_SAFETY_EXT

The VK_EXT_validation_features extension can be used to enable Synchronization
Validation programmatically at CreateInstance time, as shows in this code snippet:

VkValidationFeatureEnableEXT enables[] =

{VK_VALIDATION_FEATURE_ENABLE_SYNCHRONIZATION_VALIDATION_EXT};

VkValidationFeatureDisableEXT disables[4] = {

 VK_VALIDATION_FEATURE_DISABLE_THREAD_SAFETY_EXT,

 VK_VALIDATION_FEATURE_DISABLE_API_PARAMETERS_EXT,

 VK_VALIDATION_FEATURE_DISABLE_OBJECT_LIFETIMES_EXT,

 VK_VALIDATION_FEATURE_DISABLE_CORE_CHECKS_EXT

};

VkValidationFeaturesEXT features = {

01/2021 LunarG Guide to Vulkan Synchronization Validation 12

https://vulkan.lunarg.com/doc/sdk/latest/windows/vkconfig.html

 VK_STRUCTURE_TYPE_VALIDATION_FEATURES_EXT, nullptr, 1, enables, 4, disables

};

VkInstanceCreateInfo info = {};

info.pNext = &features;

Typical Usage

Given the challenge of debugging synchronization issues, applications should be tested
within a debugger, set to break for any validation error. On Windows this can be done in
Vulkan Configurator by selecting “Debug/Action” options “Break” and “Debug Output”
causes Synchronization Validation to show the text of the error message in the
debugger and pause program execution for each error. On all platforms, this can be
accomplished by setting a debug breakpoint in a debug callback. The debug callback is
defined using vkCreateDebugUtilsMessengerEXT with VK_DEBUG_REPORT_ERROR_BIT_EXT set in
VkDebugReportCallbackCreateInfoEXT::flags. For each reported hazard, the provoking
Vulkan call will be on the debugger call stack, aiding debugging.

01/2021 LunarG Guide to Vulkan Synchronization Validation 13

Understanding Synchronization Validation Messages

All synchronization error messages begin with SYNC-<hazard name> where <hazard name>
is one of the hazard types listed above.

The message body for each is constructed:

<cmd name>: Hazard <hazard name> <command specific details> Access info (<...>)

Command specific details typically include the specifics of the access within the current
command. Examples of typical command specific detail:

01/2021 LunarG Guide to Vulkan Synchronization Validation 14

Command type Details

Copy or blit source or destination and region index

Draw or dispatch Descriptor: binding, type
Attachment: index and type

Bound buffer: vertex or index

ImageBarriers oldLayout, newLayout, subresource

Render pass transitions oldLayout, newLayout

load/store/resolve: attachment index, type, and operation

The Access info is common to all Synchronization Validation error messages. The fields
in Access info are:

Root Causing Hazards

While full details of the current resource access are available for the current Vulkan
command, the information for locating prior_usage are more limited. Most applications
(apart from debug and replay tools) will not have the sequence number (and traceback)
of commands within the current command buffer, so the location of the access w.r.t. the
prior_usage may take some effort to determine. Additionally, the command correlated with
the prior_usage will likely be correct, and indicate that the synchronization operations
between command and the current command are missing, incorrect, or incomplete.

01/2021 LunarG Guide to Vulkan Synchronization Validation 15

Field Description

usage The stage/access of the current command using the memory
range

prior_usage The stage/access of the previous (hazarded) memory use (same
naming as usage)

read_barrier For read usage, the list of stages with execution barriers between
prior_usage and usage

write_barrier For write usage, the list of stage/access (in usage format) with
memory barriers between prior_usage and usage

command The command that performed prior_usage

seq_no The zero based index of command within the command buffer it is
recorded to

reset_no the reset count of the command buffer command is recorded to

An important note (repeated here from the quickstart), is that for memory barriers stage
masks are not logically extended to logically earlier and later stages, but only apply to
the specific stages specified. Execution barriers with a dstStageMask of
̀VK_PIPELINE_STAGE_VERTEX_SHADER_BIT do imply an execution barrier including all later

stages (for example VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT). However, assuming an
access specified by dstAccessMask of VK_ACCESS_SHADER_READ_BIT would only define a
memory barrier with the vertex shader stage/shader read stage/access. No memory
barrier would be established with the fragment shader stage for the specified access.

For developer's intimate with the details of their rendering pipeline, this information may
be sufficient to directly identify the cause of the hazard. However, the following
approaches may help quickly refine the cause and fix for identified hazards.

From Access info information

The access information gives several useful pieces of information to help locate the
missing synchronization operation. Using this information to find the synchronization
can depend on the type of hazard and prior_usage.

Hazards vs. Prior Image Layout Transitions

If the prior_usage is SYNC_IMAGE_LAYOUT_TRANSITION, the write_barrier should help identify
the vkCommandPipelineBarrier or VkSubpassDependency, of the prior_usage. The
stages/access listed correlating to the dstStageMask and dstAccessMask for the prior
command should match the write_barrier value. The fix is likely (barring missing
dependency chain dstStageMask and chaining srcStageMask bits) to ensure that the
current usage added to the dstStageMask and dstAccessMask fields of the barrier or
renderpass operation that performed the layout transition.

01/2021 LunarG Guide to Vulkan Synchronization Validation 16

Hazards at Image Layout Transitions

If the hazard occurs at a layout transition, you likely have no further to look than the
srcStageMask and srcAccessMask of the current operation to find the missing or incorrect
stage or access needed to guard the layout transition. Depending on code structure,
the optimal solution may be to provide barriers at an earlier stage (when the presence
or absence of a potential hazard would be known).

Hazards between buffer and/or image resource uses

When a resource changes between roles (being written or read) without an appropriate
synchronization operation, a hazard will occur. Common situations are transitions
between transfer and rendering (or compute) operations. If the write_barrier or
read_barrier fields are non-zero, the actual error is likely a malformed barrier between
usages. The command and prior_usage fields should help identify the previous access
and the barrier field can be used to find the existing barrier, event, or renderpass
operation similarly to finding prior image layout transitions. Barriers constructed from a
chain of dependencies may be more difficult to back trace in this way and may require a
different approach.

Method of bisection

In addition to back-tracking from Access info to find the missing or incomplete barriers,
one can debug these issues by a simple bisection search. To determine where in
program flow a missing barrier occurs simply insert a serializing debug barrier
(described below) within your application prior to the hazard. If the hazard is removed,
then the cause of the hazard is prior to the location of the debug barrier. If the hazard
remains, the cause of the hazard is subsequent to the debug barrier.

A debug barrier is either a vkCmdPipelineBarrier or VkSubpassDependency, that specifies
that all execution and access after the barrier happen-after all execution and access
prior to it. In both cases set srcStageMask and dstStageMask set to
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT. For the pipeline barrier one VkMemoryBarrier is
required with both srcAccessMask and dstAccessMask set to
VK_ACCESS_MEMORY_READ_BIT|VK_ACCESS_MEMORY_WRITE_BIT. The corresponding fields within
VkSubpassDependency are set to the same value. If a vkCmdPipelineBarrier debug barrier
is to be used during a subpass, it must all be specified as a self-dependency for that
subpass. (See Subpass Self-dependency in the Vulkan API Specification)

01/2021 LunarG Guide to Vulkan Synchronization Validation 17

https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap7.html#synchronization-pipeline-barriers-subpass-self-dependencies
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap7.html#synchronization-pipeline-barriers-subpass-self-dependencies

Note: this is for debug only and should not be left in production code as this could have
significant performance impact as the barrier serializes all GPU operations before and
after the inserted barrier.

Optimizing Synchronization with Synchronization
Validation

While synchronization is required to avoid data corruption within a Vulkan application,
excessive synchronization can negatively impact performance by introducing stalls in
command execution. Synchronization Validation can be used to identify the minimum
needed barriers and dependencies. To do this, one can reduce the scopes of barriers
and dependencies and note the hazards that are reported by Synchronization
Validation. By adding just the barriers needed to eliminate the hazard error message,
you can establish a minimally synchronized set of barriers and dependencies. Clearly
one must be careful to exercise all possible Vulkan command sequences capable of
producing different hazards, to assure that the narrowed set maintains correctness.

The minimally set of synchronization operations established may be quite broad (in
terms of a large number of stages and accesses guarded). This can occur when the
Vulkan usage pattern is highly variable before and after the synchronization operations.
In these cases, it may be useful for the application to customize the barriers for the
various use patterns. In addition, reordering processing steps to reduce the need for
synchronization, may be of value.

In assessing the need to further optimize synchronization, performance benchmarks,
and GPU usage tools should can and should be used. At each step however, testing
with Synchronization Validation can assure that correctness is maintained.

01/2021 LunarG Guide to Vulkan Synchronization Validation 18

For Further Information and Current Status
Please contact LunarG to let us know what you think of Synchronization Validation or to
offer suggestions for future releases. The best way to reach us is via our GitHub
repository using the link shown below:

https://github.com/KhronosGroup/Vulkan-ValidationLayers

Status, known limitations, and ongoing work on this project can be followed on the
Synchronization Validation project page:

https://github.com/KhronosGroup/Vulkan-ValidationLayers/projects/5

Revision history

01/2021 LunarG Guide to Vulkan Synchronization Validation 19

Revision Date SDK Release Comment

August 28, 2020 SDK 1.2.148.1 Alpha version, initial release date

January 11, 2021 SDK 1.2.162.1 V1.0 release. Supporting single command buffer
hazard detection.
Remove alpha specific comments, updated enable
strings to standard versions, added project
information

https://github.com/KhronosGroup/Vulkan-ValidationLayers
https://github.com/KhronosGroup/Vulkan-ValidationLayers/projects/5

