

GFXReconstruct - Portable Raytracing

February 3, 2025

Fabian Schmidt
Senior Graphics Software Engineer

LunarG, Inc.

Problem Statement
Replaying a captured raytracing application proves to be more complicated than regular
rasterization-workloads. This is especially true if we attempt to replay an existing
raytracing-capture on a different gpu-device/vendor/driver. We refer to this as portable
raytracing.

The main problem is that some resources are device-specific or valid only during capturing.
Vulkan provides several extensions that allow hardware vendors to more flexibly support replay
on their devices. These extensions provide the concept of "opaque" addresses meaning they will
attempt to re-use the same addresses on replay. Examples are buffer-device-addresses,
shader-group-handles, acceleration-structure addresses and micromaps.

You can query the support for opaque resources: vulkaninfo | grep CaptureReplay
An example output might look something like this:

accelerationStructureCaptureReplay ​ ​ = true
bufferDeviceAddressCaptureReplay ​ ​ ​ ​ = true
micromapCaptureReplay ​ ​ ​ ​ ​ = false
rayTracingPipelineShaderGroupHandleCaptureReplay ​ = false

The presence of bufferDeviceAddressCaptureReplay is responsible for making many things
'just work' on the same device. But when we replay on a different device we often have to
account for different sizes, indices, and capabilities of existing Vulkan memory-heaps.This can
be accomplished with the ‘gfxrecon-replay <capture_file.gfxr> -m rebind flag.

Sadly, rebinding memory-allocations currently prevents us from using some of the
capture/replay features mentioned above, even if they are available.

GFXReconstruct - Portable Raytracing​ ​ ​ ​ ​ ​ 1

The common absence of rayTracingPipelineShaderGroupHandleCaptureReplay is a challenge
for replaying raytracing applications. But even if it is available, the size and stride requirements
for shader-binding-tables might be different.

And while accelerationStructureCaptureReplay can be used to request opaque addresses for
acceleration-structures, there is still something missing—acceleration-structures store their
internal information in attached buffers. The structure is opaque and vendor-specific as are the
required sizes for the storage and scratch-buffers required to build them. While we can reuse
stored acceleration-structures and their assets during a replay, this normally only works on the
same device and driver.

To summarize:

For a portable replay, resources can and will be different during capture and replay. Buffer
addresses and handles might directly appear in API calls like vkCmdTraceRays or
vkCmdBuildAccelerationStructuresKHR, and they also appear as content of attached buffers,
which could have been manipulated on gpu-timeline. This makes it generally hard for tools to
intercept or sanitize input data on the cpu timeline.

Lastly, buffer-device addresses might also appear in buffers or push-constants attached to
shaders using SPV_KHR_physical_storage_buffer. We will not cover that here, only mention that
it is a very similar problem.

Since the various capture/replay features may be unavailable for various reasons, we decided a
better approach was necessary.

Solution
A possible way forward starts with tracking the resources during capturing. This allows
additional content to be stored in the capture file that will assist detection of items (such as
buffer addresses) during replay. Then, during replay, these handles and addresses will be fixed
to generate the original desired result of the captured content.

For VkBuffer and VkAccelerationStructureKHR this means providing a back and forth mapping
between their Vulkan-handles and associated VkDeviceAddresses.

VkDeviceAddess (capture) -> (VkBuffer + offset) -> VkDeviceAddess (replay)

Shader-group-handles acquired with vkGetRayTracingShaderGroupHandlesKHR also need to
remap handles at replay time using extra information gleaned during capture. We examine the
VkPhysicalDeviceRayTracingPipelinePropertiesKHR for capture and replay, compare the sizes,

GFXReconstruct - Portable Raytracing​ ​ ​ ​ ​ ​ 2

strides, and alignment requirements. This allows us to decide if the shader-binding-table’s layout
is compatible or a drop-in replacement will be required.

For VkAccelerationStructureKHR we have no choice but to recreate them using the original
input-data. To do this, we must add additional tracking of associated buffers containing
triangles, indices, AABB, and instance-data. The replay needs to additionally check for required
buffer-sizes for storage and scratch space during builds. If the size requirements during replay
are larger than during capture, we swap the original buffers with sufficiently large
shadow-buffers and structures. With that in place we again need to check and potentially map
from capture to replay handles.

After all this, we replace all occurrences of stale or replaced resources to avoid a gpu crash.
This is straightforward for data passed directly into API-calls but more complicated for
resources provided in buffers. We must wait until the data gets consumed on the gpu-timeline,
otherwise any buffer copy or compute shader operation could change our sanitized buffer
again.

So we know what to replace and where, leaving us with ‘how’.

We inject a compute-based replacer or sanitizer pass into the existing VkCommandBuffer used
to submit the calls to vkCmdTraceRays or vkCmdBuildAccelerationStructuresKHR. This is a
simple hashmap lookup, but on gpu-timeline. We’ll have a strong guarantee that we’ll be last to
manipulate any buffer content before submission.

Finally, all added Vulkan calls are marked as such, allowing differentiation between original
behavior and portability additions.

GFXReconstruct - Portable Raytracing​ ​ ​ ​ ​ ​ 3

Result
We added an initial release of portable raytracing to gfxreconstruct and you can find it in the
upcoming Vulkan-SDK 1.4.304.1 .

Nothing changes for the default case, when replaying on the same device. The portable
raytracing code paths are used only when replay is triggered using the -m rebind flag. Using this
flag allows replay of raytracing captures taken on another gpu device or driver.

Conclusion
We can now demonstrate portable replay of raytracing applications that would previously crash
during playback. This increases the usefulness and coverage of our tool for cases like bug
reporting.

We believe that this general approach will also be applicable for other existing and upcoming
gpu-centric extensions like VK_EXT_device_generated_commands.

However, there remains more work to do. For example, a future effort will apply this process to
device addresses used in shaders, a.k.a. SPV_KHR_physical_storage_buffer

GFXReconstruct - Portable Raytracing​ ​ ​ ​ ​ ​ 4

	GFXReconstruct - Portable Raytracing
	Problem Statement
	Solution
	Result
	Conclusion

