
The 7th Vulkan Developer Conference
Cambridge, UK | February 11-13, 20252025

So you want to write a Vulkan Renderer in 2025

Charles Giessen
LunarG, Inc.

GPU SOFTWARE SPECIALISTS

Charles Giessen
LunarG

Who am I?
● Started learning Vulkan in 2017
● Joined LunarG in 2019

○ Maintain the Vulkan-Loader, Api dump,
VkCube, Vulkaninfo, Vulkan-Utility-Libraries,
SDK development, & more

● Joined the Vulkan Community Discord in 2018
○ Moderator since ~2021

2

● Strictly my opinions
● My experience is with Desktop Vulkan

○ Android is my blindspot
● Vulkan is MASSIVE

○ Cannot cover everything!
● Not covering rendering algorithms

○ Focusing on the Vulkan parts of rendering

Disclaimers

3

Let’s get started!

4

1. Pick the API Version
2. Pick the extensions to use
3. ????
4. Profit!!!!

How to design a Vulkan Renderer

5

What version to target?

6

● Whatever your hardware minimum is!
● Depends on target platform

○ Desktop (Linux & Windows) can reliably use 1.3
○ Android lags behind with 1.1
○ MacOS (MoltenVK) is 1.2 but supports most everything in 1.3

● 1.4 still too new to recommend

Which version to target?

7

● Instance
○ From the Vulkan-Loader
○ vkEnumerateInstanceVersion (Added in 1.1)

● Physical Device
○ From the GPU Driver
○ VkPhysicalDeviceProperties::apiVersion

● Application
○ Defined by the application
○ VkApplicationInfo::apiVersion

Three different version numbers

8

What extensions to use?

9

Two Types of Extensions
● Device

○ Vast majority
○ From vkEnumerateDeviceExtensions
○ Many have been promoted into Core Versions

● Instance
○ Small number
○ From vkEnumerateInstanceExtensions
○ VK_EXT_debug_utils
○ WSI: VK_KHR_<platform>_surface & VK_KHR_surface

10

300+ published extensions
● Every extension solves a problem

○ Some fix just one site
○ Other rewrite half the API

● Depends on many things
○ Hardware minimum
○ Target version
○ Supported platforms
○ Maintenance constraints

● Way too many to cover each individually

11

But which to choose!?
● Overwhelming to read about each one
● Many are aliases

○ To core functionality
○ To other extensions

● Many have dependencies on other extensions
● In addition, must enable feature bools

○ VkPhysicalDeviceFeatures2 pNext chain
○ Core features in VkPhysicalDeviceVulkan<Version#>Features
○ Extension features in

VkPhysicalDeviceVulkan<Ext_name>Features<Ext_suffix>
● More specifics on checking & enabling extensions

○ https://github.com/KhronosGroup/Vulkan-
Guide/blob/main/chapters/enabling_extensions.adoc

12

https://github.com/KhronosGroup/Vulkan-Guide/blob/main/chapters/enabling_extensions.adoc
https://github.com/KhronosGroup/Vulkan-Guide/blob/main/chapters/enabling_extensions.adoc

Vulkan-Profiles
● Profiles define explicit extension & features requirements

○ Expressed in JSON
● Example: VP_KHR_roadmap_2024

○ “This roadmap profile is intended to be supported by newer devices
shipping in 2024 across mainstream smartphone, tablet, laptops, console
and desktop devices.”

● Profiles-Library sets up VkDevice according to a given Profile
● Profiles are a great help in picking extensions & features

○ Just use what’s in a profile
○ Or use the profile directly!

13

Why not just use Vulkan 1.0?

14

● Single target, no guesswork
● Supported everywhere
● Just learning 1.0 is hard enough

○ New things means more to learn
● Huge departure from OpenGL
● New concepts introduced

○ Render Passes
○ Synchronization
○ Descriptor Sets
○ Pipelines
○ And more!

Vulkan 1.0

15

● Not all parts of Vulkan 1.0 are a success
○ Clunky interfaces
○ Complex interactions
○ Missing capabilities

● To be expected for an entirely new API!
● Picking a version and extensions is hard
● Yet using Vulkan 1.0 is even harder

New paradigms, new problems

16

● Good news is that this is 2025, not 2016
● Most of the glaring have been fixed
● Many more problems fixed in the following years
● The rest of the slides discuss these problems and their

solutions

We aren’t stuck with Vulkan 1.0

17

Immutable Pipelines

18

● Compiled binary
of pipeline inputs

● Bake once
○ Costly

● Bind many times
○ Cheap

● Exchange time for
space

What even is a pipeline?

19

Source: Vulkan
Specification

● Pipelines require everything to be known ahead of time
● Each combination of inputs requires a dedicated pipeline

○ Shader, topology, blend mode, vertex layout, cull mode, etc
● Causes a combinatorial explosion of variants

○ 10,000’s of pipelines for shipping titles
● Pipeline creating takes time

○ Creates stutters if done just-in-time

What’s the catch?

20

● Not everything has to be immutable
● Set desired state while recording command buffers
● Over 70 states can be dynamic
● Great reference for all of it:

○ https://github.com/KhronosGroup/Vulkan-
Guide/blob/main/chapters/dynamic_state_map.adoc

VkDynamicState

21

https://github.com/KhronosGroup/Vulkan-Guide/blob/main/chapters/dynamic_state_map.adoc
https://github.com/KhronosGroup/Vulkan-Guide/blob/main/chapters/dynamic_state_map.adoc

● VK_EXT_graphics_pipeline_libraries
○ Divide graphics pipeline into multiple parts
○ Link them into single binary right before binding
○ Diminishes cost of many variants

● VK_EXT_shader_object
○ Ditch pipelines entirely
○ Bind compiled shader stages
○ Currently only available on AMD & Nvidia

● Jury is still out on best way to do this

Reducing compilation overhead

22

Render Passes

23

● All drawing commands happen inside a “renderpass”
● Acts as a pseudo render graph
● Allows tiling GPU’s to use memory efficiently
● Describes image attachments
● Defines the subpasses
● Declare dependencies

between subpasses

Render Passes and Sub Passes

24

Source: Sascha Willems
Vulkan input attachments and sub passes

● Not so great to use in practice
● Single object with many responsibilities

○ Defines attachments
○ Defines memory barriers for attachments
○ Defines subpasses that read from and write to attachments

● Hard to architect into a renderer
○ Yet another input for pipelines

● Main benefit is for tiling based GPU’s
○ Commonly found in mobile

● Requires using VkFramebuffers
○ Only exists to combine images and renderpasses

Great in theory…

25

● 1.3’s dynamicRendering feature, VK_KHR_dynamic_rendering
● Replaces VkRenderpass
● Describe renderpasses inline with command buffer recording
● Greatly simplifies application architecture

○ Creating pipelines only needs attachment descriptions
● Tiling GPU’s aren’t left behind either
● 1.4 dynamicRenderingLocalRead,

VK_KHR_dynamic_rendering_local_read
○ Enables efficient multi-pass rendering

Introducing Dynamic Rendering

26

Descriptor Sets

27

● Organize shader inputs into “sets” by update frequency
● Update each set together
● Bind sets as needed
● Reasonable API for the gamut of existing hardware
● Small snippet of descriptor API:

Descriptor Sets

28

● Cannot update descriptors after binding in a command buffer
● All descriptors must be valid, even if not used
● Descriptor arrays must be sampled uniformly

○ Different invocations can’t use different indices
○ Can sample “dynamically uniform”, eg runtime based index

● Upper limit on descriptor counts
● Discourages GPU-Driven rendering architectures

Descriptor Difficulties

29

● Descriptor Indexing
○ 1.3, optional in 1.2, or VK_EXT_descriptor_indexing
○ Update descriptors after binding
○ Update unused descriptors
○ Relax requirement that all descriptors must be valid, even if unused
○ Non-uniform array indexing

● Buffer Device Address
○ 1.3, optional in 1.2, or VK_KHR_buffer_device_address
○ Directly access buffers through addresses without a descriptor

● Descriptor Buffers - VK_EXT_descriptor_buffer
○ Manage descriptors directly
○ Similar to D3D12’s descriptor model

Solution Space

30

Shader Memory Layout

31

What is the equivalent C Buffer of this?

32

And of this?

33

● Didn’t specify which layout to use
○ “Extended Alignment” AKA std140
○ “Base Alignment” AKA std430
○ “Scalar Block Layout” AKA scalar

● Each defines offset, alignment and
padding
○ For each type (float, int, vec2, vec3, vec4, etc)

Trick question!

34

std140 / std430

● So which should you use?

● It uses C-like structure rules
● Matches expectations
● Enables easy sharing of data between host and device

○ No tedious padding and offsetting!
● Very commonly supported
● Great reference for all shader memory layouts

○ https://github.com/KhronosGroup/Vulkan-
Guide/blob/main/chapters/shader_memory_layout.adoc

Scalar block layout!

35

https://github.com/KhronosGroup/Vulkan-Guide/blob/main/chapters/shader_memory_layout.adoc
https://github.com/KhronosGroup/Vulkan-Guide/blob/main/chapters/shader_memory_layout.adoc

Synchronization

36

● By far the hardest part of Vulkan
● Many different kinds of sync

○ Fence, Binary Semaphore, Event, Barrier
● Good synchronization are critical to

good performance

Synchronization

37

● Streamlines Host and Device sync
● Replaces fences and (binary) semaphores
● Is a monotonically increasing uint64_t
● Have work wait for a value, increment to signal work is done
● Able to “Wait before signal”
● Does not currently work with swap chains

Timeline Semaphores

38

● Improve usability and simplify the synchronization interface
● Specifies pipeline stages and access flags together
● More efficient Events
● Perform image memory barriers without transitions
● Makes using synchronization just that much easier
● Exhaustive discussion of the changes here

○ https://github.com/KhronosGroup/Vulkan-
Guide/blob/main/chapters/extensions/VK_KHR_synchronization2.adoc

Synchronization 2

39

https://github.com/KhronosGroup/Vulkan-Guide/blob/main/chapters/extensions/VK_KHR_synchronization2.adoc
https://github.com/KhronosGroup/Vulkan-Guide/blob/main/chapters/extensions/VK_KHR_synchronization2.adoc

Miscellaneous Features

40

● Adds additional shader builtins
○ BaseInstance
○ BaseVertex
○ DrawIndex

● Useful for indexing into buffers

Shader Draw Parameters

41

● Generate draw commands on GPU
○ EX: Frustum culling

● But how many commands to use?
● DrawIndirectCount allows sourcing the count from GPU buffer

Indirect Rendering

42

● New extension for GPU driven techniques
● Does way more than sourcing drawing parameters from GPU

○ Bind Vertex & Index buffers
○ Push constants
○ Pipelines & Shader objects
○ Draw calls
○ Compute dispatches
○ Raytracing
○ Mesh shading

VK_EXT_device_generated_commands

43

Conclusion

44

Conclusion

45

● Vulkan-Guide is awesome
● Vulkan 1.0 was just a starting point
● The new stuff is worth the time and effort

○ All added for good reasons

Thank you!

Download this
Presentation

https://khr.io/1cr

Actions
Take the Annual

Developers
Survey

https://khr.io/1cq

Talk to us and
get Swag!

Visit the
LunarG Sponsor Table

Survey Results
➔ Are shared with the Khronos

Vulkan Working Group
➔ Are used to drive

development priorities
throughout 2025

Survey Closes
Wednesday, Feb. 19, 2025

(GMT—7)

Your Feedback
Matters!

46

